首页 | 本学科首页   官方微博 | 高级检索  
     


Dansylated thyrotropin as a probe of hormone-receptor interactions.
Authors:S M Aloj  G Lee  E Consiglio  S Formisano  A P Minton  L D Kohn
Abstract:A strongly fluorescent 5-dimethylamino-1-naphthalene sulfonate (dansyl) derivative of bovine thyrotropin has been prepared. The dye-conjugated hormone is bioactive and shares, essentially unchanged, the membrane binding and adenylate cyclase stimulatory activities of the native hormone. Binding of 125I-labeled dansyl-thyrotropin to thyroid plasma membranes is sensitive to inhibition by gangliosides and, as is the case for the binding of 125I-thyrotropin, galactosyl-N-acetylgalactosaminyl[N-acetylneuraminyl-N-acetylneuraminyl]-galactosylglucosylceramide (GDIb) is the most potent binding inhibitor. Gangliosides interact with dansyl-thyrotropin, causing a large increase of the quantum yield and a 5- to 10-nm blue shift of the emission maximum of the hormone-bound naphthalene chromophore; gangliosides cause no change in the fluorescent properties of the free dye. The fluorescence enhancement caused by gangliosides can be specifically reversed by unlabeled thyrotropin. The effect of gangliosides on dansyl-thyrotropin fluorescence is strongly salt-dependent; salts cannot, however, reverse the formation of the dansyl-thyrotropin.ganglioside complex once it has formed. The salt data suggest that the association of the ganglioside with dansyl-thyrotropin is dominated by electrostatic interactions, but that salt-independent, short range interactions, most likely hydrophobic, dominate the dissociation of the dansyl-thyrotropin-ganglioside adduct. Sucrose gradient centrifugation, ultracentrifugation, and fluorescence polarization data indicate that the gangliosides are micellar in nature under the conditions of these experiments. Acid titration of dansyl-thyrotropin causes a marked quenching of dansyl fluorescence which in part reflects dissociation of the hormone into its constituent alpha and beta subunits. In the presence of GDIb, but not N-acetylneuraminylgalactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosylceramide (GDIa), pH-dependent quenching and subunit dissociation are essentially eliminated. Circular dichroism results and fluorescence polarization studies support the interpretation that the ganglioside interaction causes a conformational change in the thyrotropin molecule. The acid titration data together with differences in the ability of gangliosides to influence the tyrosine fluorescence of the thyrotropin molecule indicate that different gangliosides induce different conformational perturbations in the thyrotropin molecule.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号