首页 | 本学科首页   官方微博 | 高级检索  
     


The Influence of Previous Irradiance on Photosynthetic Induction in Three Species Grown in the Gap and Understory of a Fagus Crenata Forest
Authors:Naramoto  M.  Han  Q.  Kakubari  Y.
Affiliation:(1) Institute for Basin Ecosystem Studies, Gifu University, 1-1 Yanagido, 501–1193 Gifu, Japan;(2) Section of Evolution and Ecology, University of California, Davis, CA 95616, USA
Abstract:Photosynthetic induction responses to a sudden increase in photosynthetic photon flux density (PPFD) from lower background PPFD (0, 25, 50, and 100 mgrmol m–2 s–1) to 1 000 mgrmol m–2 s–1 were measured in leaves of Fagus crenata, Acer rufinerve Siebold & Zucc., and Viburnum furcatum growing in a gap and understory of a F. crenata forest in the Naeba mountains. In the gap, A. rufinerve exhibited more than 1.2-fold higher maximum net photosynthetic rate (PNmax) than F. crenata and V. furcatum. Meanwhile, in the understory F. crenata exhibited the highest PNmax among the three species. The photosynthetic induction period required to reach PNmax was 3–41 min. The photosynthetic responses to increase in PPFD depended on the background PPFD before increase in PPFD. The induction period required to reach PNmax was 2.5–6.5-fold longer when PPFD increased from darkness than when PPFD increased from 100 mgrmol m–2 s–1. The induction period was correlated with initial PN and stomatal conductance (gs) relative to maximum values before increase in PPFD. The relationship was similar between the gap and the understory. As the background PPFD increased, the initial PN and gs increased, indicating that the degrees of biochemical and stomata limitations to dynamic photosynthetic performance decreased. Therefore, photosynthetic induction responses to increase in PPFD became faster with the increasing background PPFD. The differences in time required to reach induction between species, as well as between gap and understory, were mainly due to the varying of relative initial induction states in PN and gs at the same background PPFD.
Keywords:Acer rufinerve  Fagus crenata  photosynthetic photon flux density  photosynthetic induction  stomatal conductance  Viburnum furcatum
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号