首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Specificity of inhibition of calcium- and calmodulin-dependent protein kinase by alloxan
Authors:Laura L Norling  Jerry R Colca  Charles L Brooks  Robert F Kloepper  Michael L McDaniel  Michael Landt
Institution:1. Department of Pediatrics and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA;2. St. Louis Children''s Hospital, St. Louis, MO 63110, U.S.A.
Abstract:Studies were undertaken to determine whether the effect of alloxan to inactivate a membrane-bound calcium- and calmodulin-dependent protein kinase was specific for the pancreatic islets and whether inactivation of the kinase occurred also after injection of a diabetogenic dose of alloxan into rats. The effect of alloxan was also examined on similar particulate calcium- and calmodulin-dependent kinases present in two other secretory tissues, mammary acini and forebrain. Exposure of alloxan to cell-free preparations of all secretory tissues examined inhibited the calcium- and calmodulin-dependent kinase activities, suggesting that the specificity of alloxan action was not due to the presence in islets of a kinase uniquely sensitive to alloxan. To determine whether the selective effect of alloxan action was mediated at the cellular level, experiments were performed with alloxan presented to intact cells. Whereas alloxan exposure to viable cell preparations of islets and brain decreased the subsequently measured calcium- and calmodulin-dependent protein kinase activity, the activity measured in mammary acini exposed to these alloxan concentrations was unaffected. Injection (i.v.) of a diabetogenic dose of alloxan (50 mg/kg) produced an immediate (10 min) and selective inactivation of the calcium- and calmodulin-dependent protein kinase in pancreatic islests but had no effect on the similar kinases measured in brain and mammary acini. These results indicate that the unique sensitivity of islets to alloxan may result from the ability of alloxan to rapidly gain intracellular access and then inactivate this kinase activity. The selective effect of alloxan injection on this islet protein kinase is consistent with the hypothesis that inactivation of the kinase by alloxan is related to its diabetogenic effect in vivo.
Keywords:Inhibition specificity  Protein kinase  Alloxan  Mes  4-morpholineethanesulfonic acid  Pipes  1  4-piperazinediethanesulfonic acid  Hepes  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号