首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Trafficking of TrkA-green fluorescent protein chimerae during nerve growth factor-induced differentiation
Authors:Jullien Jérôme  Guili Vincent  Derrington Edmund A  Darlix Jean-Luc  Reichardt Louis F  Rudkin Brian B
Institution:Differentiation and Cell Cycle Group, Laboratoire de Biologie Moleculaire et Cellulaire, UMR 5665 CNRS, Ecole Normale Supérieure de Lyon, France.
Abstract:A chimera of the nerve growth factor (NGF) receptor, TrkA, and green fluorescent protein (GFP) was engineered by expressing GFP in phase with the carboxyl terminus of TrkA. TrkA-GFP becomes phosphorylated on tyrosine residues in response to NGF and is capable of initiating signaling cascades leading to prolonged MAPK activation and differentiation in PC12 nnr5 cells. TrkA constructs, progressively truncated in the carboxyl-terminal domain, were prepared as GFP chimerae in order to identify which part of the receptor intracellular domain is involved in its trafficking. Immunofluorescence observations show that TrkA-GFP is found mainly in cell surface membrane ruffles and in endosomes. Biochemical analysis indicated that the cytoplasmic domain of TrkA is not necessary for correct maturation and cell surface translocation of the receptor. An antibody against the extracellular domain of TrkA (RTA) was used as ligand to stimulate internalization and phosphorylation of TrkA. Co-localization studies with anti-phosphorylated TrkA antibodies support a role for such complexes in the propagation of signaling from the cell surface, resulting in the activation of TrkA in areas of the endosome devoid of receptor-ligand complexes. Confocal time-lapse analysis reveals that the TrkA-GFP chimera shows highly dynamic trafficking between the cell surface and internal locations. TrkA-positive vesicles were estimated to move 0.46 +/- 0.09 microm/s anterograde and 0.48 +/- 0.07 microm/s retrograde. This approach and the fidelity of the biochemical properties of the TrkA-GFP demonstrate that real-time visualization of trafficking of tyrosine kinase receptors in the presence or absence of the ligand is feasible.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号