首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of L- or D-Pro incorporation into hydrophobic or hydrophilic helix face of amphipathic alpha-helical model peptide on structure and cell selectivity
Authors:Song Yun Mi  Yang Sung Tae  Lim Shin Saeng  Kim Yangmee  Hahm Kyung Soo  Kim Jae Il  Shin Song Yub
Institution:Department of Bio-Materials, Graduate School and Research Center for Proteineous Materials, Chosun University, 501-759 Kwangju, Republic of Korea.
Abstract:A synthetic amphipathic alpha-helical model peptide, KLW, displays non-cell selective cytotoxicity. To investigate the effects of L- or D-Pro kink incorporation into hydrophobic or hydrophilic helix face of KLW on structure, cell selectivity, and membrane-binding affinity, we designed a series of four peptides, in which Leu(9) and Lys(11) in the hydrophobic and hydrophilic helix face of KLW, respectively, are substituted with L- or D-Pro. A L- or D-Pro substitution (KLW-L9P or KLW-L9p) of Leu(9) at the hydrophobic helix face of KLW induced a more significant reduction in hemolytic activity with improved antibacterial activity than that (KLW-K11P or KLW-K11p) of Lys(11) in the hydrophilic helix face. In addition, D-Pro-containing peptides (KLW-L9p and KLW-K11p) displayed less hemolytic activity than L-Pro-containing peptides (KLW-L9P and KLW-K11P). Tryptophan fluorescence studies revealed that bacterial cell selectivity of KLW-L9P, KLW-L9p, and KLW-K11p is closely related to selective interactions with negatively charged phospholipids. CD analysis revealed that L- or D-Pro incorporation into KLW reduces the alpha-helicity of the peptide and D-Pro incorporation induces more significant disruption in alpha-helical structure than L-Pro incorporation. Our results collectively suggest that D-Pro incorporation into the hydrophobic helix face of non-cell selective amphipathic alpha-helical peptides may be useful for the design of novel antimicrobial peptides possessing high bacterial cell selectivity without hemolytic activity.
Keywords:Amphipathic α-helical model peptide  l- or d-Pro kink incorporation" target="_blank">l- or d-Pro kink incorporation  Cell selectivity
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号