首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Selective separation of biobutanol from acetone-butanol-ethanol fermentation broth by means of sorption methodology based on a novel macroporous resin
Authors:Lin Xiaoqing  Wu Jinglan  Jin Xiaohong  Fan Jiansheng  Li Renjie  Wen Qingshi  Qian Wenbin  Liu Dong  Chen Xiaochun  Chen Yong  Xie Jingjing  Bai Jianxin  Ying Hanjie
Institution:State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, China.
Abstract:The traditional distillation method for recovery of butanol from fermentation broth is an energy-intensive process. Separation of butanol based on adsorption methodology has advantages in terms of biocompatibility and stability, as well as economy, and therefore gains much attention. However, the application of the commercial adsorbents in the integrated acetone-butanol-ethanol (ABE) fermentation process is restricted due to the low recovery (less than 85%) and the weak capability of enrichment in the eluent (3-4 times). In this study, we investigated the sorption properties of butanol onto three kinds of adsorbents with different polarities developed in our laboratory, that is, XD-41, H-511, and KA-I resin. The sorption behaviors of single component and ABE ternary mixtures presented in the fermentation broths on KA-I resin were investigated. KA-I resin had higher affinity for butanol than for acetone, ethanol, glucose, acetic acid, and butyric acid. Multicomponent ABE sorption on KA-I resin was modeled using a single site extended Langmuir isotherm model. In a desorption study, all the adsorbed components were desorbed in one bed volume of methanol, and the recovery of butanol from KA-I resin was 99.7%. The concentration of butanol in the eluent was increased by a factor of 6.13. In addition, KA-I resin was successfully regenerated by two bed volumes of water. Because of its quick sorption, high sorption capacity, low cost, and ease of desorption and regeneration, KA-I resin exhibits good potential for compatibility with future ABE fermentation coupled with in situ recovery product removal techniques.
Keywords:ABE fermentation  biobutanol  desorption  resin regeneration  sorption
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号