首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Implication of adenosine A2A receptors in hypotension-induced vasodilation and cerebral blood flow autoregulation in rat pial arteries
Authors:Shin H K  Park S N  Hong K W
Institution:Center for Biofunctional Molecule, Pohang University of Science and Technology, Korea.
Abstract:This study aimed to evaluate the role for adenosine A2A receptors in the autoregulatory vasodilation to hypotension in relation with cerebral blood flow (CBF) autoregulation in rat pial arteries. Changes in pial artery diameters were observed directly through a closed cranial window. Vasodilation induced by adenosine was markedly suppressed by ZM 241385 (1 micromol/l, A2A antagonist) and alloxazine (1 micromol/l, A2B antagonist), but not by 8-cyclopentyltheophylline (CPT, 1 micromol/l, A1 antagonist). CGS-21680-induced vasodilation was more strongly inhibited by ZM 241385 (25.3-fold; P<0.05) than by alloxazine. In contrast, 5'-N-ethylcarboxamido-adenosine (NECA)-induced vasodilation was more prominently suppressed by alloxazine (12.0-fold; P<0.001) than by ZM 241385. The autoregulatory vasodilation in response to acute hypotension of the pial arteries was significantly suppressed by ZM 241385, but not by CPT and alloxazine. Consistent with this finding, the lower limit of CBF autoregulation significantly shifted to a higher blood pressure by 1 micromol/l of ZM 241385 (53.0+/-3.9 mm Hg to 69.2+/-2.9 mm Hg, P<0.01) and 10 micromol/l of glibenclamide (54.7+/-6.5 mm Hg to 77.9+/-4.2 mm Hg, P<0.001), but not by CPT and alloxazine. Thus, it is suggested that adenosine-induced vasodilation of the rat pial artery is mediated via activation of adenosine A2A and A2B receptors, but not by A1 subtype, and activation of adenosine A2A receptor preferentially contributes to the autoregulatory vasodilation via activation of ATP-sensitive K+ channels in response to hypotension and maintenance of CBF autoregulation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号