Hopf bifurcation and transition to chaos in Lotka-Volterra equation |
| |
Authors: | L. Gardini R. Lupini M. G. Messia |
| |
Affiliation: | (1) Istituto di Matematica, Facoltà di Ingegneria, Università di Ancona, Ancona, Italy |
| |
Abstract: | It is shown that in a suitable class of Lotka-Volterra systems it is possible to characterize the centre-critical case of the Hopf bifurcation of the multipopulation equilibrium. Moreover, for three populations, it is shown that, in the non-critical case, Hopf bifurcation is supercritical. Numerical evidence of transition to chaotic dynamics, via period-doubling cascades, from the limit cycle is reported. |
| |
Keywords: | Volterra equation Hopf bifurcation Strange attractor |
本文献已被 SpringerLink 等数据库收录! |
|