首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Canine mesenchymal stem cells are effectively labeled with silica nanoparticles and unambiguously visualized in highly autofluorescent tissues
Authors:Sei-Myoung Han  Hee-Woo Lee  Dong-Ha Bhang  Kyoung-Won Seo  Hwa-Young Youn
Abstract:ABSTRACT: BACKGROUND: Developing a long-term labeling method is critical and much needed to understand the fate, migration, and contribution in tissue regeneration. Silica nanoparticles have been developed recently and have been demonstrated to be biocompatible and to have high labeling capacity. Thus, this study was designed to assess the suitability of silica nanoparticles for canine MSCs and fluorescence efficiency in a highly autofluorescent tissue. RESULTS: Development of a method for long-term labeling of cells is critical to elucidate transplanted cell fate and migration as well as the contribution to tissue regeneration. Silica nanoparticles have been recently developed and demonstrated to be biocompatible with a high labeling capacity. Thus, our study was designed to assess the suitability of silica nanoparticles for labeling canine mesenchymal stem cells (MSCs) and the fluorescence efficiency in highly autofluorescent tissue.We examined the effect of silica nanoparticle labeling on stem cell morphology, viability and differentiation as compared with those of unlabeled control cells. After 4 h of incubation with silica nanoparticles, they were internalized by canine MSCs without a change in the morphology of cells compared with that of control cells. The viability and proliferation of MSCs labeled with silica nanoparticles were evaluated by a WST-1 assay and trypan blue exclusion. No effects on cell viability were observed, and the proliferation of canine MSCs was not inhibited during culture with silica nanoparticles. Furthermore, adipogenic and osteogenic differentiation of silica nanoparticle-labeled canine MSCs was at a similar level compared with that of unlabeled cells, indicating that silica nanoparticle labeling did not alter the differentiation capacity of canine MSCs. Silica nanoparticle-labeled canine MSCs were injected into the kidneys of BALB/c mice after celiotomy, and then the mice were sacrificed after 2 or 3 weeks. The localization of injected MSCs was closely examined in highly autofluorescent renal tissues. Histologically, canine MSCs were uniformly and completely labeled with silica nanoparticles, and were unambiguously imaged in histological sections. CONCLUSIONS: The results of the current study showed that silica nanoparticles are useful as an effective labeling marker for MSCs, which can elucidate the distribution and fate of transplanted MSCs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号