首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Analysis of N-terminal capping using carbonyl-carbon chemical shift measurements
Authors:Soon-Ho Park  William Shalongo  Earle Stellwagen
Abstract:The model peptide XAAAAEAAARAAAARamide is used to examine the contributions of an N-terminal capping interaction to the conformation and stability of a helical ensemble. The reference peptide has an alanine residue at position X while the capping peptide has a serine residue at this position. The helical ensemble was characterized using circular dichroism measurements and carbonyl-carbon chemical shift measurements of selectively enriched residues. The distribution of helicity within the ensemble of the reference peptide at pH 11 and 0°C appears symmetrical, having a uniform central helix and frayed ends. This distribution is truncated at pH 6 by the repulsive electrostatic interaction between the positively charged α-amino group and the positively charged end of the helical macrodipole. The capping peptide forms a side-chain/main-chain hydrogen bond involving the serine residue and amide of alanine 4. The presence of this hydrogen bond generates a unique motif in the chemical shift profile of its helical ensemble. The conformational stabilization contributed by this hydrogen bond, although cooperatively distributed throughout the helical ensemble, is preferentially focused within the first helical turn. The stabilization provided by this hydrogen bond is able to offset the truncation of the helical ensemble generated by the repulsive electrostatic interaction observed at pH 6. Proteins 33:167–176, 1998. © 1998 Wiley-Liss, Inc.
Keywords:dichroism  13C NMR  capping  helicity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号