首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Light scattering and viscosity study of heat aggregation of insulin
Authors:Himadri B Bohidar
Abstract:Aggregation behavior and hydrodynamic parameters of insulin have been determined from static and dynamic light scattering experiments and intrinsic viscosity measurements carried out at pH 4.0, 7.5, and 9.0 in the temperature range 20–40°C in aqueous solutions. The protein aggregated extensively at elevated temperatures in the acidic solutions. Intermolecular interactions were found to be attractive and to increase with temperature. The measured intrinsic viscosity η], diffusion coefficient D0, molecular weight M, and radius of gyration Rg exhibited the universal behavior: Mη] = (2.4 ± 02) × 10−27 (Re,η/Re,D)3(D/T)−3 and (D0n)−1 ≃ (√6 πη0ζβ/kBT) 1 + 0.201)(v3)√n], where n is the number of segments in the polypeptide. The effective hydrodynamic radii deduced from η], (Re, η) and the same deduced from D0, (Re,D) showed a constant ratio, (Re,η/Re,D = 1.1 ± 0.1). Re,D/Rg = ξ was found to be (0.76 ± 0.07). From the known solvent viscosity η0, the segment length β was deduced to be (10 ± 1) Å. The excluded volume was deduced to be (5 Å)3 regardless of pH. The Flory-Huggins interaction parameter was found to be χ = 0.45 ± 0.04, independent of pH and temperature. © 1998 John Wiley & Sons, Inc. Biopoly 45: 1–8, 1998
Keywords:light scattering  intrinsic viscosity  dilute insulin solution  hydrodynamic properties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号