首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Aberrant macrophages mediate defective kidney repair that triggers nephritis in lupus-susceptible mice
Authors:Iwata Yasunori  Boström Elisabeth A  Menke Julia  Rabacal Whitney A  Morel Laurence  Wada Takashi  Kelley Vicki R
Institution:Laboratory of Molecular Autoimmune Disease, Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
Abstract:CSF-1, required for macrophage (M?) survival, proliferation, and activation, is upregulated in the tubular epithelial cells (TECs) during kidney inflammation. CSF-1 mediates M?-dependent destruction in lupus-susceptible mice with nephritis and, paradoxically, M?-dependent renal repair in lupus-resistant mice after transient ischemia/reperfusion injury (I/R). We now report that I/R leads to defective renal repair, nonresolving inflammation, and, in turn, early-onset lupus nephritis in preclinical MRL/MpJ-Faslpr/Fas(lpr) mice (MRL-Fas(lpr) mice). Moreover, defective renal repair is not unique to MRL-Fas(lpr) mice, as flawed healing is a feature of other lupus-susceptible mice (Sle 123) and MRL mice without the Fas(lpr) mutation. Increasing CSF-1 hastens renal healing after I/R in lupus-resistant mice but hinders healing, exacerbates nonresolving inflammation, and triggers more severe early-onset lupus nephritis in MRL-Fas(lpr) mice. Probing further, the time-related balance of M1 "destroyer" M? shifts toward the M2 "healer" phenotype in lupus-resistant mice after I/R, but M1 M? continue to dominate in MRL-Fas(lpr) mice. Moreover, hypoxic TECs release mediators, including CSF-1, that are responsible for stimulating the expansion of M1 M? inherently poised to destroy the kidney in MRL-Fas(lpr) mice. In conclusion, I/R induces CSF-1 in injured TECs that expands aberrant M? (M1 phenotype), mediating defective renal repair and nonresolving inflammation, and thereby hastens the onset of lupus nephritis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号