Abstract: | Normal cyclic dairy cattle (n = 7) underwent a midventral laparotomy on day 17 of the estrous cycle and were fitted, ipsilateral to the CL, with: an electromagnetic flow transducer around the uterine artery (UA; n = 5); catheters within the ovarian vein (OV; n = 7) via a uterine branch of the ovarian vein, uterine branch of the ovarian artery (UBOA; n = 5) and facial artery (FA; n = 7). On day 18, blood samples were collected at 30 min intervals for 1 h prior to injection of estradiol-17 beta (E2; 3 mg) and 12 h post-E2. Uterine blood flow (UBF) was monitored continuously and plasma samples analyzed for PGF2 alpha and PGFM. Exact locations of catheters in reproductive tracts were verified post-slaughter. Data were analyzed by method of least squares analysis of variance. Uterine blood flow (ml/min) increased above pre-E2 flow rates within 30 min post-E2 injection, peaked between 2.5 to 3.5 h and declined between 4 to 8.5 h. A small secondary rise in UBF occurred between 9 and 12 h. Regression analysis for concentrations (pg/ml) of PGF2 alpha and PGFM in the OV (i.e., [OV]-[FA]) demonstrate a similar response as PGFM concentration in the FA in that all increased at approximately 3 h, peaked between 5 and 7 h and returned to near baseline levels by 9 to 10 h post-E2. Facial artery PGFM concentrations were positively correlated with uterine production of PGF2 alpha (r = .66) and PGFM (r = .30), whereas FA PGF2 alpha concentrations were not. In three of five cows, a difference in PGF2 alpha was detected between UBOA and FA (UBOA greater than FA); supportive of a local countercurrent exchange between the uterine venous drainage and the ovarian artery. |