首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Extracting the Behaviorally Relevant Stimulus: Unique Neural Representation of Farnesol,a Component of the Recruitment Pheromone of Bombus terrestris
Authors:Martin F Strube-Bloss  Austin Brown  Johannes Spaethe  Thomas Schmitt  Wolfgang R?ssler
Institution:1. Department of Behavioral Physiology & Sociobiology, Theodor-Boveri-Institute of Bioscience, Biocenter University of Würzburg, Am Hubland, 97074, Würzburg, Germany.; 2. Department of Molecular and Cellular Biology, University of Arizona, Life Sciences South Building, 1007 E. Lowell Street, Tucson, AZ, 85721, United States of America.; University of Paris 13, FRANCE,
Abstract:To trigger innate behavior, sensory neural networks are pre-tuned to extract biologically relevant stimuli. Many male-female or insect-plant interactions depend on this phenomenon. Especially communication among individuals within social groups depends on innate behaviors. One example is the efficient recruitment of nest mates by successful bumblebee foragers. Returning foragers release a recruitment pheromone in the nest while they perform a ‘dance’ behavior to activate unemployed nest mates. A major component of this pheromone is the sesquiterpenoid farnesol. How farnesol is processed and perceived by the olfactory system, has not yet been identified. It is much likely that processing farnesol involves an innate mechanism for the extraction of relevant information to trigger a fast and reliable behavioral response. To test this hypothesis, we used population response analyses of 100 antennal lobe (AL) neurons recorded in alive bumblebee workers under repeated stimulation with four behaviorally different, but chemically related odorants (geraniol, citronellol, citronellal and farnesol). The analysis identified a unique neural representation of the recruitment pheromone component compared to the other odorants that are predominantly emitted by flowers. The farnesol induced population activity in the AL allowed a reliable separation of farnesol from all other chemically related odor stimuli we tested. We conclude that the farnesol induced population activity may reflect a predetermined representation within the AL-neural network allowing efficient and fast extraction of a behaviorally relevant stimulus. Furthermore, the results show that population response analyses of multiple single AL-units may provide a powerful tool to identify distinct representations of behaviorally relevant odors.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号