首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Experimental complexities in evaluating the comparative phytotoxicity of chemicals with different modes of action
Institution:1. Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China;2. Inner Mongolia Prataculture Research Center, Hohhot, Inner Mongolia 010031, China
Abstract:Careful attention should be paid to bioassay experiments to examine the comparative phytotoxicity of chemicals with different modes of actions. Experimental complexities in examining comparative phytotoxicity of chemicals with differing modes of action are determined and discussed to appreciate the importance of relevant secondary effects that can be quickly measured. The chemicals selected were: benzoic acid, isoxaflutole and rimsulfuron. Data on shoot and root length of 7-day-old mustard (Brassica napus L.) seedlings, shoot height of 4-week-old mustard plants and total leaf chlorophyll concentrations were determined when plants were grown in soil treated with different concentrations of the three chemicals. Scanning electron microscope (SEM) studies were conducted to determine any damage to mustard root hairs after treatment. Root growth of 7-day-old mustard seedlings was reduced when treated with different concentrations of benzoic acid or rimsulfuron. Root growth of mustard seedlings, however, largely remained unaffected when plants were grown in soil treated with isoxaflutole. While no significant reduction in either chlorophyll concentration or shoot height of 4-week-old mustard plants was observed when treated with soil-applied benzoic acid, both parameters were inhibited when mustard plants were treated with isoxaflutole or rimsulfuron. SEM studies revealed significant damage to root hairs in a 7-day-old mustard seedlings when plants were grown in soil treated with 500, 1000 and 2000 mg/L benzoic acid, and 0.5 mg/L rimsulfuron. No such damage was observed when mustard was grown in soil treated with isoxaflutole.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号