首页 | 本学科首页   官方微博 | 高级检索  
     


Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.)
Authors:Claudia E. Vickers  Malcolm Possell  C. Nicholas Hewitt  Philip M. Mullineaux
Affiliation:1. Department of Biological Sciences, Essex University, Colchester, C04 3SQ, UK
3. Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, St Lucia, QLD, Australia
2. Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
Abstract:Isoprene is a volatile 5-carbon hydrocarbon derived from the chloroplastic methylerythritol 2-C-methyl-d-erythritol 4-phosphate isoprenoid pathway. In plants, isoprene emission is controlled by the enzyme isoprene synthase; however, there is still relatively little known about the genetics and regulation of this enzyme. Isoprene synthase gene structure was analysed in three poplar species. It was found that genes encoding stromal isoprene synthase exist as a small gene family, the members of which encode virtually identical proteins and are differentially regulated. Accumulation of isoprene synthase protein is developmentally regulated, but does not differ between sun and shade leaves and does not increase when heat stress is applied. Our data suggest that, in mature leaves, isoprene emission rates are primarily determined by substrate (dimethylallyl diphosphate, DMADP) availability. In immature leaves, where isoprene synthase levels are variable, emission levels are also influenced by the amount of isoprene synthase protein. No thylakoid isoforms could be identified in Populus alba or in Salix babylonica. Together, these data show that control of isoprene emission at the genetic level is far more complicated than previously assumed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号