首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Different stability of N- and C-domain of diferric ovotransferrin in urea and application to the determination of iron distribution between the two domains
Authors:K Nakazato  T Yamamura  K Satake
Institution:Department of Chemistry, Faculty of Science, Science University of Tokyo.
Abstract:The study of guanidine-HCl or thermal denaturation of diferric ovotransferrin (Fe2Tf) has revealed a simultaneous unfolding of the two domains of the protein (Ikeda et al. (1985) FEBS Lett. 182, 305-309). In urea denaturation of Fe2Tf, however, two distinct steps of unfolding were observed in the urea concentration range from 4.5 to 9 M at pH 8.0 and 37 degrees C by measuring the residual iron-bound protein (absorbance at 465 nm) and the remaining folded structures (circular dichroism at 222 nm). From a study of urea denaturation of partially iron-saturated Tf whose iron preferentially occupied the N-domain, it was found that the first and the second steps of denaturation corresponded to those of the N-terminal (4.5-6 M urea) and C-terminal domains (over 7 M urea), respectively. The N-domain of Fe2Tf was selectively unfolded in 7 M urea and digested with trypsin to provide an iron-bound C-terminal fragment (42 kDa) in good yield (about 80% of theoretical). The kinetic analysis of the decrease in A465 of Fe2Tf in 9 M urea showed that the N-domain unfolded 3 x 10(2) times faster than the C-domain. With partially iron-saturated Tf, the decrease of A465 in 9 M urea also proceeded in a biphasic manner and the ratio, the decrement in A465 of the rapid phase/the decrement in A465 of the slow phase, gave the value of iron distribution as Fe at the N-site/Fe at the C-site.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号