首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Studies on the mechanism of NADPH oxidation by the granule fraction isolated from human resting polymorphonuclear blood cells.
Authors:C Auclair  E Cramer  J Hakim  P Boivin
Abstract:Various factor affecting NADPH-oxidation by resting human leucocyte granules (LG) at acid pH, have been investigated. It was found that: 1) oxidation of NADPH by LG was increasingly inhibited by increased cyanide concentrations in the medium and was abolished by 4 mM cyanide. 2) with or without cyanide in the incubation medium, LG omitted, Mn++ in the presence of NADPH induced superoxide anion (O- WITH 2) production, as evidenced by oxygen consumption and H2O2 production, which were abolished (in the absence of cyanide) by cytochrome C (a potent O- with 2 scavenger). 3) Both NADPH oxidation in the presence of 2 mM cyanide (cyanide-resistant) and in its absence (cyanide-sensitive) by LG occurred only in the presence of Mn++, and both were inhibited by superoxide dismutase. 4) Cyanide-resistant NADPH oxidation by LG generated H2O2, was inhibited by H2O2 and was not modified by "active" catalase. The ratio of cyanide-resistant NADPH oxidation/O2 uptake was 1 up to 1.25 mM NADPH, and increased above this concentration. 5) Cyanide-sensitive NADPH oxidation was inhibited by catalase and increased upon addition of H2O2. The ratio of cyanide-sensitive NADPH oxidation/O2 uptake was 2. It was concluded that after initiation by O - with 2, produced independently of LG, two sequential types of LG dependent NADPH oxidations occur. First, an O - with 2-dependent protein mediated NADPH oxidation (cyanide-resistant) which generates H2O2 and O - with 2 occurs. Second, NADPH peroxidation (cyanide-sensitive) which utilizes H2O2 takes place.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号