首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Tracking climate change in a dispersal-limited species: reduced spatial and genetic connectivity in a montane salamander
Authors:G Velo-Antón  J L Parra  G Parra-Olea  K R Zamudio
Institution:1. Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia;2. Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Distrito Federal, 04510 México;3. Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853 USA
Abstract:Tropical montane taxa are often locally adapted to very specific climatic conditions, contributing to their lower dispersal potential across complex landscapes. Climate and landscape features in montane regions affect population genetic structure in predictable ways, yet few empirical studies quantify the effects of both factors in shaping genetic structure of montane-adapted taxa. Here, we considered temporal and spatial variability in climate to explain contemporary genetic differentiation between populations of the montane salamander, Pseudoeurycea leprosa. Specifically, we used ecological niche modelling (ENM) and measured spatial connectivity and gene flow (using both mtDNA and microsatellite markers) across extant populations of P. leprosa in the Trans-Mexican Volcanic Belt (TVB). Our results indicate significant spatial and genetic isolation among populations, but we cannot distinguish between isolation by distance over time or current landscape barriers as mechanisms shaping population genetic divergences. Combining ecological niche modelling, spatial connectivity analyses, and historical and contemporary genetic signatures from different classes of genetic markers allows for inference of historical evolutionary processes and predictions of the impacts future climate change will have on the genetic diversity of montane taxa with low dispersal rates. Pseudoeurycea leprosa is one montane species among many endemic to this region and thus is a case study for the continued persistence of spatially and genetically isolated populations in the highly biodiverse TVB of central Mexico.
Keywords:climate change  connectivity  dispersal  genetic structure  landscape genetics  Pseudoeurycea leprosa  Trans-Mexican Volcanic Belt
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号