首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Application and validation of the lattice Boltzmann method for modelling flow-related clotting
Authors:Harrison S E  Smith S M  Bernsdorf J  Hose D R  Lawford P V
Institution:Academic Unit of Medical Physics, Department of Medical Physics and Clinical Engineering, Royal Hallamshire Hospital, University of Sheffield, , Glossop Road, Sheffield, UK.
Abstract:The purpose of this paper is to present a simple clotting model, based on residence time and shear stress distribution, that can simulate the deposition over time of enzyme-activated milk in an in vitro system. Results for the model are compared with experiments exhibiting clot deposition in the region of a sharp-edged stenosis. The milk experiments have been shown to be a valuable analogue for the experimental representation of flow-induced blood clotting, particularly in the context of separation of hydrodynamic from biochemical factors. The facility to predict the flow-induced clotting of the blood analogue, in which the chemistry reduces to what is effectively a zeroth order reaction, gives confidence in this physics-based approach to simulation of the final part of the coagulation cascade. This type of study is a necessary precursor to the development of a complex, multi-factorial, biochemical model of the process of thrombosis. In addition to the clotting simulations, comparisons are reported between the computed flow patterns prior to clot deposition and flow visualisation studies. Excellent agreement of hydrodynamic parameters is reported for a Reynolds number of 100, and qualitative agreement is seen for the complex, disturbed flow occurring at a physiologically relevant Reynolds number of 550. The explicit, time-stepping lattice Boltzmann approach may have particular merit for the transitional flow at this higher Reynolds number.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号