首页 | 本学科首页   官方微博 | 高级检索  
     


Seed orientation and magnetic field strength have more influence on tomato seed performance than relative humidity and duration of exposure to non-uniform static magnetic fields
Authors:Danny Poinapen  Daniel C.W. Brown  Girish K. Beeharry
Affiliation:1. Department of Biology, University of Western Ontario, London, Ontario, Canada;2. Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada;3. Department of Physics, University of Mauritius, Réduit, Mauritius;4. Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
Abstract:Different factors (e.g., light, humidity, and temperature) including exposure to static magnetic fields (SMFs), referred here as critical factors, can significantly affect horticultural seed performance. However, the link between magnetic field parameters and other interdependent factors affecting seed viability is unclear. The importance of these critical factors affecting tomato (Solanum lycopersicum L.) var. MST/32 seed performance was assessed after performing several treatments based on a L9 (34) (four factors at three levels) orthogonal array (OA) design. The variable factors in the design were magnetic flux density (R1 = 332.1 ± 37.8 mT; R2 = 108.7 ± 26.9 mT; and R3 = 50.6 ± 10.5 mT), exposure time (1, 2, and 24 h), seed orientation (North polarity, South polarity, and control – no magnetic field), and relative humidity (RH) (7.0, 25.5, and 75.5%). After seed moisture content stabilisation at the different chosen RH, seeds were exposed in dark under laboratory conditions to several treatments based on the OA design before performance evaluation. Treatments not employing magnetic field exposure were used as controls. Results indicate that electrolyte leakage rate was reduced by a factor of 1.62 times during seed imbibition when non-uniform SMFs were employed. Higher germination (∼11.0%) was observed in magnetically-exposed seeds than in non-exposed ones, although seedlings emerging from SMF treatments did not show a consistent increase in biomass accumulation. The respective influence of the four critical factors tested on seed performance was ranked (in decreasing order) as seed orientation to external magnetic fields, magnetic field strength, RH, and exposure time. This study suggests a significant effect of non-uniform SMFs on seed performance with respect to RH, and more pronounced effects are observed during seed imbibition rather than during later developmental stages.
Keywords:MC, moisture content   RH, relative humidity   SMFs, static magnetic fields
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号