首页 | 本学科首页   官方微博 | 高级检索  
     


Spatial division of phosphoenolpyruvate carboxylase and nitrate reductase activity and its regulation by cytokinins in CAM-induced leaves of Guzmania monostachia (Bromeliaceae)
Authors:Paula Natá  lia Pereira,Eduardo Purgatto,Helenice Mercier
Affiliation:1. Department of Botany, Institute of Biosciences, University of São Paulo, CEP 05508-090 São Paulo, SP, Brazil;2. Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, CEP 05422-970 São Paulo, SP, Brazil
Abstract:Crassulacean acid metabolism (CAM) is a physiological adaptation of plants that live in stress environment conditions. A good model of CAM modulation is the epiphytic bromeliad, Guzmania monostachia, which switches between two photosynthetic pathways (C3–CAM) in response to different environmental conditions, such as light stress and water availability. Along the leaf length a gradient of acidity can be observed when G. monostachia plants are kept under water deficiency. Previous studies showed that the apical portions of the leaves present higher expression of CAM, while the basal regions exhibit lower expression of this photosynthetic pathway. The present study has demonstrated that it is possible to induce the CAM pathway in detached leaves of G. monostachia kept under water deficit for 7 d. Also, it was evaluated whether CAM expression can be modulated in detached leaves of Guzmania and whether some spatial separation between NO3 reduction and CO2 fixation occurs in basal and apical portions of the leaf. In addition, we analyzed the involvement of endogenous cytokinins (free and ribosylated forms) as possible signal modulating both NO3 reduction and CO2 fixation along the leaf blade of this bromeliad. Besides demonstrating a clear spatial and functional separation of carbon and nitrogen metabolism along G. monostachia leaves, the results obtained also indicated a probable negative correlation between endogenous free cytokinins – zeatin (Z) and isopentenyladenine (iP) – concentration and PEPC activity in the apical portions of G. monostachia leaves kept under water deficit. On the other hand, a possible positive correlation between endogenous Z and iP levels and NR activity in basal portions of drought-exposed and control leaves was verified. Together with the observations presented above, results obtained with exogenous cytokinins treatments, strongly suggest that free cytokinins might act as a stimulatory signal involved in NR activity regulation and as a negative regulator of PEPC activity in CAM-induced leaves of G. monostachia during a diel cycle.
Keywords:CAM, crassulacean acid metabolism   DW, dry weight   ΔH+, dawn&ndash  dusk titratable acidity   iP, isopentenyladenine   iPR, isopentenyladenine riboside   MDH, malate dehydrogenase   NR, nitrate reductase   PEPC, phosphoenolpyruvate carboxylase   RWC, relative water content   Z, zeatin   ZR, zeatin riboside
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号