首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton
Authors:Shardendu K Singh  Girish Badgujar  Vangimalla R Reddy  David H Fleisher  James A Bunce
Institution:1. Wye Research and Education Center, University of Maryland, MD, USA;2. Crop Systems and Global Change Laboratory, USDA-ARS, Beltsville, MD 20705, USA;3. Asian Institute of Technology, Pathumthani, Thailand
Abstract:Nutrients such as phosphorus may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of the 21st century. Elevated CO2 may overcome the diffusional limitations to photosynthesis posed by stomata and mesophyll and alter the photo-biochemical limitations resulting from phosphorus deficiency. To evaluate these ideas, cotton (Gossypium hirsutum) was grown in controlled environment growth chambers with three levels of phosphate (Pi) supply (0.2, 0.05 and 0.01 mM) and two levels of CO2 concentration (ambient 400 and elevated 800 μmol mol−1) under optimum temperature and irrigation. Phosphate deficiency drastically inhibited photosynthetic characteristics and decreased cotton growth for both CO2 treatments. Under Pi stress, an apparent limitation to the photosynthetic potential was evident by CO2 diffusion through stomata and mesophyll, impairment of photosystem functioning and inhibition of biochemical process including the carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxyganase and the rate of ribulose-1,5-bisphosphate regeneration. The diffusional limitation posed by mesophyll was up to 58% greater than the limitation due to stomatal conductance (gs) under Pi stress. As expected, elevated CO2 reduced these diffusional limitations to photosynthesis across Pi levels; however, it failed to reduce the photo-biochemical limitations to photosynthesis in phosphorus deficient plants. Acclimation/down regulation of photosynthetic capacity was evident under elevated CO2 across Pi treatments. Despite a decrease in phosphorus, nitrogen and chlorophyll concentrations in leaf tissue and reduced stomatal conductance at elevated CO2, the rate of photosynthesis per unit leaf area when measured at the growth CO2 concentration tended to be higher for all except the lowest Pi treatment. Nevertheless, plant biomass increased at elevated CO2 across Pi nutrition with taller plants, increased leaf number and larger leaf area.
Keywords:A  rate of photosynthesis (μmol   CO2   m&minus    s&minus  1)  Amax  light saturated maximum photosynthesis (μmol   CO2   m&minus    s&minus  1)  Astd  standardized A (μmol   CO2   m&minus    s&minus  1) as estimated at &asymp  40   Pa Ci  aCO2  ambient treatment CO2 concentration (400   μmol   mol&minus  1)  eCO2  elevated treatment CO2 concentration (800   μmol   mol&minus  1)  Ca  atmospheric  external and CO2 in leaf cuvette or surrounding the leaf  Ci  intercellular CO2 concentration (μmol   mol&minus  1)  Cc  chloroplastic CO2 concentration (μmol   mol&minus  1)  C:N  carbon to nitrogen ratio  DAP  days after planting  ETR  electron transport rate (μmol   electron   m&minus    s&minus  1)  Fv&prime  /Fm&prime    chlorophyll fluorescence  gm  mesophyll conductance (mol   CO2   m&minus    s&minus    bar&minus  1)  gs  stomatal conductance (mol   H2  m&minus    s&minus  1)  Jmax  maximal photosynthetic electron transport rate (μmol   electron   m&minus    s&minus  1)  LAER  leaf area expansion rate  Lm  mesophyll limitation to A  Ls  stomatal limitation to A  LSE  light saturation estimate (μmol   photon   m&minus    s&minus  1)  P  tissue phosphorus content  PAR  photosynthetically active radiation (μmol   m&minus    s&minus  1)  Pi  phosphate supplied as treatment  PSII  photosysystem II  Φ  maximum apparent quantum efficiency/yield (μmol   CO2   μmol&minus  1 photon)  ΦPSII  photochemical yield of PSII electron transport rate (μmol electron (μmole photon)&minus  1)  ΦCO2ΦCO2" target="_blank">gif" overflow="scroll">ΦCO2  quantum yield of CO2 fixation (μmol CO2 (μmole photon)&minus  1)  Rd  dark respiration (μmol   CO2   m&minus    s&minus  1)  RuBP  ribulose-1  5-bisphosphate  Rubisco  ribulose-1  5-bisphophate carboxylase/oxygenase  SLW  specific leaf weight (mg   cm&minus  2)  VCmax  maximal carboxylation rate (μmol   CO2   m&minus    s&minus  1)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号