首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of Zn2+-dependent and Mg2+/Triton X-100-dependent tyrosine protein kinases in ethylenediaminetetraacetate-treated P2 membrane fraction of monkey brain basal ganglia
Authors:S Ramamoorthy  A S Balasubramanian
Affiliation:Department of Neurological Sciences, Christian Medical College Hospital, Vellore, India.
Abstract:Tyrosine phosphorylation of a 55- and 60-kDa protein was observed when EDTA-treated P2 membrane fraction from monkey basal ganglia was incubated with [gamma-32P]-ATP in the presence of Zn2+. Other metal ions were less effective in this phosphorylation. The effect of Zn2+ did not appear to be due to its inhibition of a tyrosine phosphatase. In the presence of Mg2+/Triton X-100 instead of Zn2+, phosphorylation on tyrosine residues of a 17-kDa protein and the external substrate poly(Glu, Tyr) 4:1 copolymer was observed. Both Mg2+ and Triton X-100 were essential for this and Zn2+ inhibited both of these phosphorylations. Convincing evidence for the existence of Zn2+-dependent and Mg2+/Triton X-100-dependent tyrosine protein kinases was obtained when the two kinases could be separated by extraction of the membranes by Triton X-100. The Zn2+-dependent phosphorylation was present exclusively in the Triton-solubilized supernatant whereas the Mg2+/Triton X-100-dependent phosphorylation was found associated with the Triton-insoluble membrane fractions. Externally added histone could also be phosphorylated on tyrosine residues in a Zn2+- or Mg2+/Triton X-100-dependent manner by the supernatant or membrane fraction, respectively.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号