首页 | 本学科首页   官方微博 | 高级检索  
     


The respiratory chain of plant mitochondria. XV. Equilibration of cytochromes c549, b553, b557 and ubiquinone in mung bean mitochondria: Placement of cytochrome b557 and estimation of the midpoint potential of ubiquinone
Authors:Bayard T. Storey
Affiliation:

Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pa. 19104, U.S.A.

Abstract:

1. 1. Cycles of oxidation followed by reduction at pH 7.2 have been induced in uncoupled anaerobic mung bean mitochondria treated with succinate and malonate by addition of oxygen-saturated medium. Under the conditions used, cytochromes b557, b553, c549 (corresponding to c1 in mammalian mitochondria) and ubiquinone are completely oxidized in the aerobic state, but become completely reduced in anaerobiosis.

2. 2. The time course of the transition from fully oxidized to fully reduced in anaerobiosis was measured for cytochromes c549, b557, and b553. The intramitochondrial redox potential (IMPh) was calculated as a function of time for each of the three cytochromes from the time course of the oxidized-to-reduced transition and the known midpoint potentials of the cytochromes at pH 7.2. The three curves so obtained are superimposable, showing that the three cytochromes are in redox equilibrium under these conditions during the oxidized-to-reduced transition.

3. 3. This result shows that the slow reduction of cytochrome b557 under these conditions, heretofore considered anomalous, is merely a consequence of its more negative midpoint potential of +42 mV at pH 7.2, compared to +75 mV for cytochrome b553 and +235 mV for cytochrome c549. Cytochrome b557 is placed on the low potential side of coupling site II and transfers electrons to cytochrome c549 via the coupling site.

4. 4. The time course of the transition from fully oxidized to fully reduced was also measured for ubiquinone. Using the change in intramitochondrial potential IMPh with time obtained from the three cytochromes, the change in redox state of ubiquinone with IMPh was calculated. When replotted as IMPh versus the logarithm of the ratio (fraction oxidized)/(fraction reduced), two redox components with n = 2 were found. The major component is ubiquinone with a midpoint potential Em7.2 = + 70 mV. The minor component has a midpoint potential Em7.2 = − 12 mV; its nature is unknown.

Abbreviations: IMPh, intramitochondrial potential, referred to the normal hydrogen electrode; Em7.2, midpoint potential at pH 7.2

Keywords:intramitochondrial potential, referred to the normal hydrogen electrode  midpoint potential at pH 7.2
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号