首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A carboxy-terminal domain determines the subunit specificity of KCNQ K+ channel assembly
Authors:Schwake Michael  Jentsch Thomas J  Friedrich Thomas
Institution:Centre for Molecular Neurobiology Hamburg, ZMNH, Falkenried 94, Germany.
Abstract:Mutations in KCNQ K+ channel genes underlie several human pathologies. KCNQ α-subunits form either homotetramers or hetero-oligomers with a restricted subset of other KCNQ α-subunits or with KCNE β-subunits. KCNQ1 assembles with KCNE β-subunits but not with other KCNQ α-subunits. By contrast, KCNQ3 interacts with KCNQ2, KCNQ4 and KCNQ5. Using a chimaeric strategy, we show that a cytoplasmic carboxy-terminal subunit interaction domain (sid) suffices to transfer assembly properties between KCNQ3 and KCNQ1. A chimaera (KCNQ1-sidQ3) carrying the si domain of KCNQ3 within the KCNQ1 backbone interacted with KCNQ2, KCNQ3 and KCNQ4 but not with KCNQ1. This interaction was shown by enhancement of KCNQ2 currents, testing for dominant-negative effects of pore mutants, determining its effects on surface expression and co-immunoprecipitation experiments. Conversely, a KCNQ3-sidQ1 chimaera no longer affects KCNQ2 but interacts with KCNQ1. We conclude that the si domain suffices to determine the subunit specificity of KCNQ channel assembly.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号