首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ischemia-induced brain iron delocalization: Effect of iron chelators
Authors:Mohamed Oubidar  Micheline Boquillon  Christine Marie  Lisbeth Schreiber and Jean Bralet
Institution:

Laboratoire de Pharmacodynamie, Faculté de Pharmacie, Dijon Cedex, France

Abstract:Tissue damage in cerebral ischemia may be produced by acidosis-induced delocalization of intracellular iron which acts as a catalyst in oxidative reactions. Acidosis was induced either by homogenization and incubation of rat cortical homogenates in acidified buffers or by submitting hyperglycemic rats to complete ischemia, a procedure that leads to intracellular lactic acidosis. The level of low molecular weight species (LMWS) iron was measured after filtration of tissue homogenates through a 10,000 Mr ultrafiltration membrane. When cortical tissue was homogenized in buffer pH 7, the level of LMWS iron was equal to 0.21 μg/g. It was significantly enhanced by acidification of the homogenization medium, reaching 0.34 μg/g at pH 6 and 0.75 μg/g at pH 5. When the tissue was homogenized in water, the LMWS iron level reached 0.17 μg/g in normoglycemic rats and 0.38 μg/g (p < 0.5) in hyperglycemic rats. Both aerobic incubation of homogenates for 1 h at 37°C and inclusion of EDTA in the homogenization medium led to further increases in the iron level. In order to demonstrate the deleterious role of iron in brain ischemia, the effect of treatment with bipyridyl, an iron-chelating agent, was assessed by measuring regional brain edema by the specific gravity method, 24 h following induction of thrombotic brain infarction. The treatment significantly attenuated the development of brain edema, reducing the water content of the infarcted area by about 2.5%. Taken together, these results support the hypothesis that a significant component of brain ischemic injury involves an iron-dependent mechanism.
Keywords:Brain edema  Oxygen radicals  Acidosis  Iron delocalization  Iron chelators  Brain infarction  Cerebral edema  Free radicals
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号