首页 | 本学科首页   官方微博 | 高级检索  
   检索      


CLC-3 channels modulate excitatory synaptic transmission in hippocampal neurons
Authors:Wang Xue Qing  Deriy Ludmila V  Foss Sarah  Huang Ping  Lamb Fred S  Kaetzel Marcia A  Bindokas Vytautas  Marks Jeremy D  Nelson Deborah J
Institution:Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637, USA.
Abstract:It is well established that ligand-gated chloride flux across the plasma membrane modulates neuronal excitability. We find that a voltage-dependent Cl(-) conductance increases neuronal excitability in immature rodents as well, enhancing the time course of NMDA receptor-mediated miniature excitatory postsynaptic potentials (mEPSPs). This Cl(-) conductance is activated by CaMKII, is electrophysiologically identical to the CaMKII-activated CLC-3 conductance in nonneuronal cells, and is absent in clc-3(-/-) mice. Systematically decreasing Cl(-)](i) to mimic postnatal Cl(-)](i) regulation progressively decreases the amplitude and decay time constant of spontaneous mEPSPs. This Cl(-)-dependent change in synaptic strength is absent in clc-3(-/-) mice. Using surface biotinylation, immunohistochemistry, electron microscopy, and coimmunoprecipitation studies, we find that CLC-3 channels are localized on the plasma membrane, at postsynaptic sites, and in association with NMDA receptors. This is the first demonstration that a voltage-dependent chloride conductance modulates neuronal excitability. By increasing postsynaptic potentials in a Cl(-) dependent fashion, CLC-3 channels regulate neuronal excitability postsynaptically in immature neurons.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号