首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interpreting the aggregation kinetics of amyloid peptides
Authors:Pellarin Riccardo  Caflisch Amedeo
Institution:Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
Abstract:Amyloid fibrils are insoluble mainly beta-sheet aggregates of proteins or peptides. The multi-step process of amyloid aggregation is one of the major research topics in structural biology and biophysics because of its relevance in protein misfolding diseases like Alzheimer's, Parkinson's, Creutzfeld-Jacob's, and type II diabetes. Yet, the detailed mechanism of oligomer formation and the influence of protein stability on the aggregation kinetics are still matters of debate. Here a coarse-grained model of an amphipathic polypeptide, characterized by a free energy profile with distinct amyloid-competent (i.e. beta-prone) and amyloid-protected states, is used to investigate the kinetics of aggregation and the pathways of fibril formation. The simulation results suggest that by simply increasing the relative stability of the beta-prone state of the polypeptide, disordered aggregation changes into fibrillogenesis with the presence of oligomeric on-pathway intermediates, and finally without intermediates in the case of a very stable beta-prone state. The minimal-size aggregate able to form a fibril is generated by collisions of oligomers or monomers for polypeptides with unstable or stable beta-prone state, respectively. The simulation results provide a basis for understanding the wide range of amyloid-aggregation mechanisms observed in peptides and proteins. Moreover, they allow us to interpret at a molecular level the much faster kinetics of assembly of a recently discovered functional amyloid with respect to the very slow pathological aggregation.
Keywords:amyloid fibril  aggregation intermediate  fibril formation kinetics  multiple pathways  Alzheimer's disease
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号