首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Studies on Genetic Male-Sterile Soybeans : II. Effect of Nodulation on Photosynthesis and Carbon Partitioning in Leaves
Authors:Huber S C  Wilson R F  Burton J W
Institution:United States Department of Agriculture, Agricultural Research Service, North Carolina State University, Raleigh, North Carolina 27650.
Abstract:Soybean (Glycine max L. Merr.) germplasm, essentially isogenic except for loci controlling male sterility (ms1) and nodulation (rj1), were developed to study the effects of reproductive development and nitrogen source on certain aspects of photosynthesis. Plants were sampled from flowering (77 days after transplanting) until maturity (150 days after transplanting). With all four genotypes, net carbon exchange rates were highest at flowering and declined thereafter. Photosynthetic rates of the sterile genotypes (nodulated and non-nodulated) declined more rapidly than the fertile genotypes, and after 105 days, both sterile genotypes maintained low but relatively constant carbon exchange rates (<3 milligrams CO2/gram fresh weight per hour). Photosynthetic rates and starch accumulation (difference between afternoon and morning levels) declined with time. The sterile genotypes attained the highest morning starch levels, which reflected reduced starch mobilization. After 92 days, the proportion of photosynthetically fixed carbon that was partitioning into starch (relative leaf starch accumulation) in the sterile genotypes increased dramatically. In contrast, relative leaf starch accumulation in the fertile genotypes remained relatively constant with time. Throughout the test period, all four genotypes maintained leaf sucrose levels between 5 and 15 micromoles glucose equivalents per gram fresh weight.

The activities of sucrose phosphate synthase (SPS) in leaf extracts of the four genotypes declined from 77 to 147 days. Nodulated genotypes tended to maintain higher activities (leaf fresh weight basis) than did the non-nodulated genotypes. In general, relative leaf starch accumulation was correlated negatively with the activity of SPS (normalized with leaf net carbon exchange rate) in leaf extracts for all four genotypes during early reproductive development, and for the fertile genotypes at all sampling dates. In contrast, leaf sucrose content was correlated positively with SPS activity during early reproductive development. These results suggested that a direct relation existed between the activity of SPS and starch/sucrose levels in soybean leaves. However, the interaction between these processes also may be influenced by other factors, particularly when leaf photosynthetic rates and plant demand for assimilates is low, as in the sterile genotypes.

Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号