首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Estimating toxic cyanobacteria in a Brazilian reservoir by quantitative real-time PCR, based on the microcystin synthetase D gene
Authors:Juliana S M Pimentel  Alessandra Giani
Institution:1. Departamento de Botanica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
Abstract:The production of microcystin toxins by cyanobacteria is an intrapopulation feature and the toxic and nontoxic genotypes can be separated only through molecular analyses targeting the mcy markers. Quantitative real-time PCR (qPCR) is a procedure that has been established, not only to detect but to specifically quantify these genotypes. In the present work, primers were designed for the mcyD region to estimate the number of cyanobacteria that are potential microcystin producers. Laboratory tests to verify the efficiency and the specificity of the primers were performed. The methodology was first established for single strain cultures and thereafter was applied in environmental water samples, from a reservoir located in the Brazilian savannah (“cerrado”). The results were very satisfactory, demonstrating the high efficiency and the specificity of the primers used, and their ability to detect different cyanobacteria genera. Of particular interest were the results showing a high proportion of toxic strains (as high as 100 %) in the environmental samples, as previously reported in another tropical system. Furthermore, the occurrence of a smaller fraction of toxic strains at high cyanobacteria densities, and of more toxic populations when fewer cyanobacteria were present, deserves further investigation. Although records of cyanobacteria blooms are very common in the tropics and suggest an increasing incidence of toxic populations, the present research is one of the few applying qPCR in a tropical environment. The results obtained here, by a technique that allows a more precise quantification and in situ follow-up of changes in toxicity, will make possible new observations of seasonal and spatial dynamics in these environments.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号