Characterization of Wild-Type Adeno-Associated Virus Type 2-Like Particles Generated during Recombinant Viral Vector Production and Strategies for Their Elimination |
| |
Authors: | Xu-Shan Wang Benjawan Khuntirat Keyun Qing Selvarangan Ponnazhagan Dagmar M. Kube Shangzhen Zhou Varavani J. Dwarki Arun Srivastava |
| |
Affiliation: | Department of Microbiology and Immunology,1. Walther Oncology Center,2. and Division of Hematology/Oncology, Department of Medicine,5. Indiana University School of Medicine, and Walther Cancer Institute,3. Indianapolis, Indiana 46202, and Virology Department, Chiron Corporation, Emeryville, California 946084. |
| |
Abstract: | The pSub201-pAAV/Ad plasmid cotransfection system was developed to eliminate homologous recombination which leads to generation of the wild-type (wt) adeno-associated virus type 2 (AAV) during recombinant vector production. The extent of contamination with wt AAV has been documented to range between 0.01 and 10%. However, the precise mechanism of generation of the contaminating wt AAV remains unclear. To characterize the wt AAV genomes, recombinant viral stocks were used to infect human 293 cells in the presence of adenovirus. Southern blot analyses of viral replicative DNA intermediates revealed that the contaminating AAV genomes were not authentic wt but rather wt AAV-like sequences derived from recombination between (i) AAV inverted terminal repeats (ITRs) in the recombinant plasmid and (ii) AAV sequences in the helper plasmid. Replicative AAV DNA fragments, isolated following amplification through four successive rounds of amplification in adenovirus-infected 293 cells, were molecularly cloned and subjected to nucleotide sequencing to identify the recombinant junctions. Following sequence analyses of 31 different ends of AAV-like genomes derived from two different recombinant vector stocks, we observed that all recombination events involved 10 nucleotides in the AAV D sequence distal to viral hairpin structures. We have recently documented that the first 10 nucleotides in the D sequence proximal to the AAV hairpin structures are essential for successful replication and encapsidation of the viral genome (X.-S. Wang et al., J. Virol. 71:3077–3082, 1997), and it was noteworthy that in each recombinant junction sequenced, the same 10 nucleotides were retained. We also observed that adenovirus ITRs in the helper plasmid were involved in illegitimate recombination with AAV ITRs, deletions of which significantly reduced the extent of wt AAV-like particles. Furthermore, the combined use of recombinant AAV plasmids lacking the distal 10 nucleotides in the D sequence and helper plasmids lacking the adenovirus ITRs led to complete elimination of replication-competent wt AAV-like particles in recombinant vector stocks. These strategies should be useful in producing clinical-grade AAV vectors suitable for human gene therapy. |
| |
Keywords: | |
|
|