首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Polar ejection forces are operative in crane-fly spermatocytes, but their action is limited to the spindle periphery.
Authors:James R LaFountain  Richard W Cole  Conly L Rieder
Institution:Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260-1300, USA. jrl@acsu.buffalo.edu
Abstract:Laser microsurgery was employed to reveal kinetochore-independent forces acting on chromosome arms in crane-fly spermatocytes. When a portion of an arm situated along the interpolar axis between the equator and a pole was cut off, the resultant acentric fragment was transported poleward and outward into the peripheral domain of the spindle. If the fragment was generated well in advance of the onset of anaphase, then at the spindle periphery, it changed direction and moved away from the pole and back toward the equator. That domain-specific movement-poleward in the central spindle and away from the pole at the spindle periphery-not only provides the first evidence for polar ejection forces acting on acentric fragments in a meiotic system, but it is the first example of kinetochore-independent forces in both directions at the same stage of division. Sniglets generated by laser pulses directed at specific sites in the spindle revealed that the mechanism underlying ejection forces was specific to chromosomes. At anaphase onset, polar ejection forces ceased, and pole-directed forces took over. At that time, chromosome fragments that had been ejected to the equator moved poleward again, providing clear evidence for kinetochore-independent forces on chromosome arms during anaphase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号