首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sex differences in otoacoustic emissions measured in rhesus monkeys (Macaca mulatta)
Authors:McFadden Dennis  Pasanen Edward G  Raper Jessica  Lange Henry S  Wallen Kim
Institution:Department of Psychology and Center for Perceptual Systems, University of Texas, 1 University Station A8000, Austin, TX 78712-0187, USA. mcfadden@psy.utexas.edu
Abstract:Click-evoked otoacoustic emissions (CEOAEs) and distortion-product OAEs (DPOAEs) were measured in about 60 rhesus monkeys. CEOAE strength was substantially greater in females than in males, just as in humans. DPOAE strength was generally slightly stronger in females, just as in humans. In males, CEOAEs were weaker (more masculine) in the fall breeding season and in winter than in the summer. In females, CEOAEs were slightly stronger (more feminine) in the fall, when sex steroids are elevated in females (and males), than in the summer when rhesus monkeys are reproductively quiescent. Thus, the sex differences in CEOAEs were greater in the fall than in the summer. We presume that the seasonal fluctuations in OAEs reflect activational hormonal effects, while the basic sex differences in OAEs likely reflect organizational effects of prenatal androgen exposure. Some monkeys of both sexes had been treated with additional testosterone or the anti-androgen flutamide during prenatal development. In accord with expectations, prenatal androgen treatment weakened CEOAEs in females, and prenatal flutamide treatment strengthened CEOAEs in males. For DPOAEs, the differences between treated and untreated groups were mostly small and often inconsistent. Taken as a whole, the data from both rhesus monkeys and humans suggest that the linear, reflection-based mechanism of OAE production that underlies CEOAEs is more sensitive to prenatal androgenic processes than is the nonlinear distortion mechanism that underlies DPOAEs.
Keywords:Otoacoustic emissions  Rhesus monkey  Sex differences  Androgens  Prenatal development  Seasonal differences  CEOAEs  DPOAEs
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号