首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of carbohydrate-structure changes on induced shifts in differential isotope-shift 13C-N.M.R.
Authors:Philip E. Pfeffer  Frederick W. Parrish  Joseph Unruh
Abstract:Deuterium-induced, 13C-isotope shifts are shown to vary considerably from the initially predicted values calculated for ordinary pyranose and furanose sugars, when minor structural changes are introduced into the carbohydrate ring. Both substitution of C-OH groups or reduction of C-OH to CH2 permitted the evaluation of γ effects of OD without the contribution of β-OD-induced shifting. The observed γ-shift values for these modified structures were twice as large as those previously noted. This difference is most probably due to favored salvation. Substitution of OH at C-6 led to the predicted loss of differential isotope-shift (d.i.s.) at C-6 because of its isolation from all β and γ OD groups. The 31P resonances of d-glucose 6-phosphate show downfield deuterium shifts. Based on d.i.s. values, new 13C-shift assignments are proposed for isomaltose and 2-amino-2-deoxy-α-d-glucose. A study of acidic carbohydrates has demonstrated that isotope shifts are somewhat larger for sp2-hybridized carbon atoms whose OH groups are acidic. Relaxation times for sp2 carbon atoms isolated from dipolar interaction with protons were very long in D2O relative to their relaxation time in the H2O environment.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号