首页 | 本学科首页   官方微博 | 高级检索  
     


Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate
Authors:Sanna M Germana  Liao Jiayu  Jo Euijung  Alfonso Christopher  Ahn Min-Young  Peterson Melissa S  Webb Bill  Lefebvre Sophie  Chun Jerold  Gray Nathanael  Rosen Hugh
Affiliation:Department of Immunology, The Center for Mass Spectrometry, The Scripps Research Institute, La Jolla, California 92037, USA.
Abstract:Sphingosine 1-phosphate (S1P) influences heart rate, coronary artery caliber, endothelial integrity, and lymphocyte recirculation through five related high affinity G-protein-coupled receptors. Inhibition of lymphocyte recirculation by non-selective S1P receptor agonists produces clinical immunosuppression preventing transplant rejection but is associated with transient bradycardia. Understanding the contribution of individual receptors has been limited by the embryonic lethality of the S1P(1) knock-out and the unavailability of selective agonists or antagonists. A potent, S1P(1)-receptor selective agonist structurally unrelated to S1P was found to activate multiple signals triggered by S1P, including guanosine 5'-3-O-(thio)triphosphate binding, calcium flux, Akt and ERK1/2 phosphorylation, and stimulation of migration of S1P(1)- but not S1P(3)-expressing cells in vitro. The agonist also alters lymphocyte trafficking in vivo. Use of selective agonism together with deletant mice lacking S1P(3) receptor reveals that agonism of S1P(1) receptor alone is sufficient to control lymphocyte recirculation. Moreover, S1P(1) receptor agonist plasma levels are causally associated with induction and maintenance of lymphopenia. S1P(3), and not S1P(1), is directly implicated in sinus bradycardia. The sustained bradycardia induced by S1P receptor non-selective immunosuppressive agonists in wild-type mice is abolished in S1P(3)-/- mice, whereas S1P(1)-selective agonist does not produce bradycardia. Separation of receptor subtype usage for control of lymphocyte recirculation and heart rate may allow the identification of selective immunosuppressive S1P(1) receptor agonists with an enhanced therapeutic window. S1P(1)-selective agonists will be of broad utility in understanding cell functions in vitro, and vascular physiology in vivo, and the success of the chemical approach for S1P(1) suggests that selective tools for the resolution of function across this broad lipid receptor family are now possible.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号