首页 | 本学科首页   官方微博 | 高级检索  
   检索      


No evidence of carbon limitation with tree age and height in Nothofagus pumilio under Mediterranean and temperate climate conditions
Authors:Piper Frida I  Fajardo Alex
Institution:Centro de Investigación en Ecosistemas de la Patagonia, Ignacio Serrano 509, Coyhaique, Chile. fpiper@ciep.cl
Abstract:

Background and Aims

Trees universally decrease their growth with age. Most explanations for this trend so far support the hypothesis that carbon (C) gain becomes limited with age; though very few studies have directly assessed the relative reductions of C gain and C demand with tree age. It has also been suggested that drought enhances the effect of C gain limitation in trees. Here tests were carried out to determine whether C gain limitation is causing the growth decay with tree age, and whether drought accentuates its effect.

Methods

The balance between C gain and C demand across tree age and height ranges was estimated. For this, the concentration of non-structural carbohydrates (NSCs) in stems and roots of trees of different ages and heights was measured in the deciduous temperate species Nothofagus pumilio. An ontogenetic decrease in NSCs indicates support for C limitation. Furthermore, the importance of drought in altering the C balance with ontogeny was assessed by sampling the same species in Mediterranean and humid climate locations in the southern Andes of Chile. Wood density (WD) and stable carbon isotope ratios (δ13C) were also determined to examine drought constraints on C gain.

Key Results

At both locations, it was effectively found that tree growth ultimately decreased with tree age and height. It was found, however, that NSC concentrations did not decrease with tree age or height when WD was considered, suggesting that C limitation is not the ultimate mechanism causing the age/height-related declining tree growth. δ13C decreased with tree age/height at the Mediterranean site only; drought effect increased with tree age/height, but this pattern was not mirrored by the levels of NSCs.

Conclusions

The results indicate that concentrations of C storage in N. pumilio trees do not decrease with tree age or height, and that reduced C assimilation due to summer drought does not alter this pattern.
Keywords:Carbon isotope composition  drought  hydraulic limitation hypothesis  Mediterranean climate  non-structural carbohydrates  Nothofagus pumilio  ontogeny  Patagonia
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号