首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization and application of a surface modification designed for QCM-D studies of biotinylated biomolecules
Authors:Nilebäck Erik  Feuz Laurent  Uddenberg Hans  Valiokas Ramūnas  Svedhem Sofia
Institution:Division of Biological Physics, Department of Applied Physics, Chalmers University of Technology, SE-412 96 G?teborg, Sweden. nileback@chalmers.se
Abstract:The rapid development of surface sensitive biosensor technologies, especially towards nanoscale devices, requires increasing control of surface chemistry to provide reliable and reproducible results, but also to take full advantage of the sensing opportunities. Here, we present a surface modification strategy to allow biotinylated biomolecules to be immobilized to gold coated sensor crystals for quartz crystal microbalance with dissipation monitoring (QCM-D) sensing. The unique feature of QCM-D is its sensitivity to nanomechanical (viscoelastic) properties at the sensing interface. The surface modification was based on mixed monolayers of oligo(ethylene glycol) (OEG) disulfides, with terminal -OH or biotin groups, on gold. Mixtures containing 1% of the biotin disulfide were concluded to be the most appropriate based on the performance when streptavidin was immobilized to biotinylated sensors and the subsequent biotinylated bovine serum albumin (BSA) interaction was studied. The OEG background kept the unspecific protein binding to a minimum, even when subjected to serum solutions with a high protein concentration. Based on characterization by contact angle goniometry, ellipsometry, and infrared spectroscopy, the monolayers were shown to be well-ordered, with the OEG chains predominantly adopting a helical conformation but also partly an amorphous structure. Storage stability was concluded to depend mainly on light exposure while almost all streptavidin binding activity was retained when storing the sensors cold and dark for 8 weeks. The surface modification was also tested for repeated antibody-antigen interactions between BSA and anti-BSA (immobilized to biotinylated protein A) in QCM-D measurements lasting for >10h with intermediate basic regeneration. This proved an excellent stability of the coating and good reproducibility was obtained for 5 interaction cycles. With this kind of generic surface modification QCM-D can be used in a variety of biosensing applications to provide not only mass but also relevant information of the structural properties of adlayers.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号