首页 | 本学科首页   官方微博 | 高级检索  
   检索      


From epithelium to neuroblasts to neurons: the role of cell interactions and cell lineage during insect neurogenesis
Authors:C Q Doe  J Y Kuwada  C S Goodman
Abstract:The grasshopper central nervous system is composed of a brain and a chain of segmental ganglia. Each hemiganglion contains about 1000 neurons, most of which can be individually identified by their unique morphology and synaptic connectivity. Shortly after gastrulation the ventral ectoderm becomes a neurogenic region. In each hemisegment, ca. 150 neurogenic ectodermal cells (nECs) give rise to a stereotyped pattern of 30 identified neuroblasts (NBs, neuronal stem cells); the remaining nECs become various non-neuronal cells or die. The 30 NBs then give rise to about 1000 neurons as each NB initiates an invariant lineage, generating a stereotyped chain of ganglion mother cells (GMCs), each of which in turn divides once to generate two identified neurons. We have used a laser microbeam or microelectrode to ablate individual cells in ovo and in vitro at various stages of embryogenesis to study how neuronal diversity and specificity are generated during development. Our results suggest that cell interactions between ca. 150 equivalent nECs allow 30 cells to enlarge into NBs, the dominant fate in a hierarchy; the NBs inhibit adjacent nECs and thus cause them to differentiate into various non-neuronal cells; each NB is assigned its unique identity according to its position of enlargement within the neurogenic epithelium; each NB then generates its characteristic chain of GMCs by an invariant cell lineage; and each GMC generates a pair of equivalent progeny, the fate of each individual neuron being determined by both its GMC of origin and interactions with its sibling.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号