Transcriptional Profile of Bacillus subtilis sigF-Mutant during Vegetative Growth |
| |
Authors: | Wout Overkamp Oscar P. Kuipers |
| |
Affiliation: | 1. Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.; 2. Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands.; ContraFect Corporation, UNITED STATES, |
| |
Abstract: | Sigma factor F is the first forespore specific transcription factor in Bacillus subtilis and controls genes required for the early stages of prespore development. The role of sigF is well studied under conditions that induce sporulation. Here, the impact of sigF disruption on the transcriptome of exponentially growing cultures is studied by micro-array analysis. Under these conditions that typically don’t induce sporulation, the transcriptome showed minor signs of sporulation initiation. The number of genes differentially expressed and the magnitude of expression were, as expected, quite small in comparison with sporulation conditions. The genes mildly down-regulated were mostly involved in anabolism and the genes mildly up-regulated, in particular fatty acid degradation genes, were mostly involved in catabolism. This is probably related to the arrest at sporulation stage II occurring in the sigF mutant, because continuation of growth from the formed disporic sporangia may require additional energy. The obtained knowledge is relevant for various experiments, such as industrial fermentation, prolonged experimental evolution or zero-growth studies, where sporulation is an undesirable trait that should be avoided, e.g by a sigF mutation. |
| |
Keywords: | |
|
|