首页 | 本学科首页   官方微博 | 高级检索  
     


Active-site residues of 2-keto-4-hydroxyglutarate aldolase from Escherichia coli. Bromopyruvate inactivation and labeling of glutamate 45
Authors:C J Vlahos  E E Dekker
Affiliation:Department of Biological Chemistry, University of Michigan, Ann Arbor 48109.
Abstract:Treatment of pure 2-keto-4-hydroxyglutarate aldolase from Escherichia coli, a "lysine-type," Schiff-base mechanism enzyme, with the substrate analog bromopyruvate results in a time- and concentration-dependent loss of enzymatic activity. Whereas the substrates pyruvate and 2-keto-4-hydroxyglutarate provide greater than 90% protection against inactivation by bromopyruvate, no protective effect is seen with glycolaldehyde, an analog of glyoxylate. Inactivation studies with [14C] bromopyruvate show the incorporation of 1.1 mol of 14C-labeled compound/enzyme subunit; isolation of a radioactive peptide and determination of its amino acid sequence indicate that the radioactivity is associated with glutamate 45. Incubation of the enzyme with excess [14C]bromopyruvate followed by denaturation with guanidine.HCl allow for the incorporation of carbon-14 at cysteines 159 and 180 as well. Whereas the presence of pyruvate protects Glu-45 from being esterified, it does not prevent the alkylation of these 2 cysteine residues. The results indicate that Glu-45 of E. coli 2-keto-4-hydroxyglutarate aldolase is essential for catalytic activity, most likely acting as the amphoteric proton donor/acceptor that is required as a participant in the overall mechanism of the reaction catalyzed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号