Activation of sea urchin sperm flagellar dynein ATPase activity by salt-extracted axonemes |
| |
Authors: | E Yokota I Mabuchi H Sato |
| |
Affiliation: | Department of Cell Biology, National Institute for Basic Biology, Aichi. |
| |
Abstract: | When 21S dynein ATPase [EC 3.6.1.3] from sea urchin sperm flagellar axonemes was mixed with the salt-extracted axonemes, the ATPase activity was much higher than the sum of ATPase activities in the two fractions, as reported previously (Gibbons, I.R. & Fronk, E. (1979) J. Biol. Chem. 254, 187-196). This high ATPase level was for the first time demonstrated to be due to the activation of the 21S dynein ATPase activity by the axonemes. The mode of the activation was studied to get an insight into the mechanism of dynein-microtubule interaction. The salt-extracted axonemes caused a 7- to 8-fold activation of the 21S dynein ATPase activity at an axoneme : dynein weight ratio of about 14 : 1. The activation was maximal at a low ionic strength (no KCl) at pH 7.9-8.3. Under these conditions, 21S dynein rebound to the salt-extracted axonemes. The maximal binding ratio of 21S dynein to the axonemes was the same as that observed in the maximal activation of 21S dynein ATPase. The sliding between the outer doublet microtubules in the trypsin-treated 21S dynein-rebound axonemes took place upon the addition of 0.05-0.1 mM ATP in the absence of KCl. During the sliding, the rate of ATP hydrolysis was at the same level as that of the 21S dynein activated by the salt-extracted axonemes. However, it decreased to the level of 21S dynein alone after the sliding. These results suggested that an interaction of the axoneme-rebound 21S dynein with B-subfibers of the adjacent outer doublet microtubules in the axoneme causes the activation of the ATPase activity. |
| |
Keywords: | |
|
|