Abstract: | Measurements of this transmembrane potential difference (V) under various conditions have demonstrated the operation of an electrogenic Cl- pump in the outer plasma membrane (plasmalemma) of the unicellular marine alga Acetabularia. In preparations of partly purified membranes (containing plasmalemma), there is Cl- stimulated, N,N'-dicyclohexylcarbodiimide-insensitive, vanadate-sensitive ATPase activity with a pH optimum around pH 6.5. These properties are consistent with the assumption that the electrogenic Cl- pump is an ATPase. In order to investigate electrical details of the "Mitchellian" type of charge-translocating enzyme, steady-state current-voltage curves of the electrogenic pump (Ip(V)) were measured in vivo under dark and light conditions and analysed by two-state reaction kinetic model. This model with the resulting parameters predicts V-sensitive, undirectional Cl- effluxes through the pump. The predictions of this model agree with the experimental results. Green light causes a fast decrease of V, which is explained as a disturbance of the pump cycle. Relaxation studies on this effect and reaction kinetic analysis of Ip(V) under different external Cl- concentrations are used to develop a consistent three-state model of the pump that includes the order of and absolute rate constants of individual reactions, states of charge, stoichiometry, voltage-sensitivity and density of the pump molecules in the membrane. |