首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Morphology, Velocity, and Intermittent Flight in Birds
Authors:Tobalske  Bret W
Institution:1 Department of Biology, University of Portland, 5000 North Willamette Boulevard,Portland, Oregon 97203
Abstract:Body size, pectoralis composition, aspect ratio of the wing,and forward speed affect the use of intermittent flight in birds.During intermittent non-flapping phases, birds extend theirwings and glide or flex their wings and bound. The pectoralismuscle is active during glides but not during bounds; activityin other primary flight muscles is variable. Mechanical power,altitude, and velocity vary among wingbeats in flapping phases;associated with this variation are changes in neuromuscularrecruitment, wingbeat frequency, amplitude, and gait. Speciesof intermediate body mass (35–158 g) tend to flap-glideat slower speeds and flap-bound at faster speeds, regardlessof the aspect ratio of their wings. Such behavior may reducemechanical power output relative to continuous flapping. Smallerspecies (<20 g) with wings of low aspect ratio may flap-boundat all speeds, yet existing models do not predict an aerodynamicadvantage for the flight style at slow speeds. The behaviorof these species appears to be due to wing shape rather thanpectoralis physiology. As body size increases among species,percent time spent flapping increases, and birds much largerthan 300 g do not flap-bound. This pattern may be explainedby adverse scaling of mass-specific power or lift per unit poweroutput available from flight muscles. The size limit for theability to bound intermittently may be offset somewhat by thescaling of pectoralis composition. The percentage of time spentflapping during intermittent flight also varies according toflight speed.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号