首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of polymerase collision release from sliding clamps on the lagging strand
Authors:Nina Y Yao  Jelena Stewart  Olga Yurieva  Mike O'Donnell
Affiliation:Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
Abstract:Replicative polymerases are tethered to DNA by sliding clamps for processive DNA synthesis. Despite attachment to a sliding clamp, the polymerase on the lagging strand must cycle on and off DNA for each Okazaki fragment. In the ‘collision release’ model, the lagging strand polymerase collides with the 5′ terminus of an earlier completed fragment, which triggers it to release from DNA and from the clamp. This report examines the mechanism of collision release by the Escherichia coli Pol III polymerase. We find that collision with a 5′ terminus does not trigger polymerase release. Instead, the loss of ssDNA on filling in a fragment triggers polymerase to release from the clamp and DNA. Two ssDNA‐binding elements are involved, the τ subunit of the clamp loader complex and an OB domain within the DNA polymerase itself. The τ subunit acts as a switch to enhance polymerase binding at a primed site but not at a nick. The OB domain acts as a sensor that regulates the affinity of Pol III to the clamp in the presence of ssDNA.
Keywords:lagging strand  Okazaki fragment  replication fork  replisome  sliding clamp
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号