首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chromatin assembly controls replication fork stability
Authors:Marta Clemente‐Ruiz  Félix Prado
Institution:Departamento de Biología Molecular, CABIMER‐CSIC, Seville, Spain
Abstract:During DNA replication, the advance of replication forks is tightly connected with chromatin assembly, a process that can be impaired by the partial depletion of histone H4 leading to recombinogenic DNA damage. Here, we show that the partial depletion of H4 is rapidly followed by the collapse of unperturbed and stalled replication forks, even though the S‐phase checkpoints remain functional. This collapse is characterized by a reduction in the amount of replication intermediates, but an increase in single Ys relative to bubbles, defects in the integrity of the replisome and an accumulation of DNA double‐strand breaks. This collapse is also associated with an accumulation of Rad52‐dependent X‐shaped molecules. Consistently, a Rad52‐dependent—although Rad51‐independent—mechanism is able to rescue these broken replication forks. Our findings reveal that correct nucleosome deposition is required for replication fork stability, and provide molecular evidence for homologous recombination as an efficient mechanism of replication fork restart.
Keywords:chromatin assembly  recombination  replication
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号