首页 | 本学科首页   官方微博 | 高级检索  
   检索      


DNA-binding mechanism of O6-alkylguanine-DNA alkyltransferase. Effects of protein and DNA alkylation on complex stability
Authors:Rasimas Joseph J  Pegg Anthony E  Fried Michael G
Institution:Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey 17033, USA.
Abstract:The mutagenic and cytotoxic effects of many endogenous and exogenous alkylating agents are mitigated by the actions of O(6)-alkylguanine-DNA alkyltransferase (AGT). In humans this protein protects the integrity of the genome, but it also contributes to the resistance of tumors to DNA-alkylating chemotherapeutic agents. Here we report properties of the interaction between AGT and short DNA oligonucleotides. We show that although AGT sediments as a monomer in the absence of DNA, it binds cooperatively to both single-stranded and double-stranded deoxyribonucleotides. This strong cooperative interaction is only slightly perturbed by active site mutation of AGT or by alkylation of either AGT or DNA. The stoichiometry of complex formation with 16-mer oligonucleotides, assessed by analytical ultracentrifugation and electrophoretic mobility shift assays, is 4:1 on single-stranded and duplex DNA and is unchanged by several active site mutations or by protein or DNA alkylation. These results have significant implications for the mechanisms by which AGT locates and interacts with repairable alkyl lesions to effect DNA repair.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号