首页 | 本学科首页   官方微博 | 高级检索  
     


Cellobiose Dehydrogenase from the Ligninolytic Basidiomycete Ceriporiopsis subvermispora
Authors:Wolfgang Harreither  Christoph Sygmund  Evelyn Dünhofen  Rafael Vicu?a  Dietmar Haltrich  Roland Ludwig
Affiliation:Department of Food Sciences and Technology, Division of Food Biotechnology, BOKU University of Natural Resources and Applied Life Sciences, A-1190 Vienna, Austria,1. Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, and Instituto Milenio de Biologica Fundamental y Aplicada, Santiago, Chile,2. Research Centre Applied Biocatalysis, A-8010 Graz, Austria3.
Abstract:Cellobiose dehydrogenase (CDH), an extracellular flavocytochrome produced by several wood-degrading fungi, was detected in cultures of the selective delignifier Ceriporiopsis subvermispora when grown on a cellulose- and yeast extract-based liquid medium. CDH amounted to up to 2.5% of total extracellular protein during latter phases of the cultivation and thus suggested an important function for the fungus under the given conditions. The enzyme was purified 44-fold to apparent homogeneity. It was found to be present in two glycoforms of 98 kDa and 87 kDa with carbohydrate contents of 16 and 4%, respectively. The isoelectric point of both glycoforms is around 3.0, differing by 0.1 units, which is the most acidic value so far reported for a CDH. By using degenerated primers of known CDH sequences, one cdh gene was found in the genomic DNA, cloned, and sequenced. Alignment of the 774-amino-acid protein sequence revealed a high similarity to CDH from other white rot fungi. One notable difference was found in the longer interdomain peptide linker, which might affect the interdomain electron transfer at higher temperatures. The preferred substrate of C. subvermispora CDH is cellobiose, while glucose conversion is strongly discriminated by a 155,000-fold-lower catalytic efficiency. This is a typical feature of a basidiomycete CDH, as are the acidic pH optima for all tested electron acceptors in the range from 2.5 to 4.5.White rot fungi are the most efficient lignocellulose degraders in our ecosystem, and several species, e.g., Phanerochaete chrysosporium, Trametes versicolor, and Ceriporiopsis subvermispora, have been studied in great detail as model organisms for this complex process. The ability to degrade phenolic and nonphenolic lignin structures in wood has made these strains attractive for biotechnological applications mainly in the pulp and paper industry, where C. subvermispora exhibits a substantial advantage over P. chrysosporium and T. versicolor through its ability for selective removal of a large fraction of lignin without attacking the valuable cellulose (16, 38). The lignin-degrading system of these fungi is composed of extracellular enzymes together with low-molecular-mass cofactors (21, 46). Typically found ligninolytic enzymes are lignin peroxidase, manganese peroxidase (MnP), and laccase. The secretion pattern of these enzymes varies greatly in white rot fungi (22) and is influenced by culture conditions and medium composition. Whereas P. chrysoporium secretes high lignin and manganese peroxidase activities but no laccase activity (32, 33), C. subvermispora produces several MnP and laccase isoforms but no lignin peroxidase. T. versicolor is the only one of these model organisms known so far to express all three of these ligninolytic enzymes efficiently (5). Together with the cellulolytic enzyme system, these patterns of enzyme activities cause varied degrees of lignin and cellulose breakdown at different cultivation stages. The simultaneous attack of cellulose and lignin is the preferred strategy of T. versicolor, whereas C. subvermispora is a selective delignifier in the first stages of biotreatment, secreting only low activities of cellulolytic enzymes at a late culture stage (12, 23), and apparently lacks cellobiohydrolase activity (23).Cellobiose dehydrogenase (CDH; EC1.1.99.18; cellobiose (acceptor) 1-oxidoreductase) is an extracellular flavocytochrome secreted by some white rot and brown rot plant pathogenic and saprotrophic fungi from the dicaryotic phyla Basidiomycota and Ascomycota (50). It shows a strong preference for cellobiose and cello-oligosaccharides, which are oxidized to the corresponding lactones during the reductive half-reaction of the FAD cofactor, and further hydrolyze to aldonic acids in the bulk water. In the oxidative half-reaction FAD transfers two reduction equivalents to either one two-electron acceptor, e.g., various quinones, or to two one-electron acceptors, like complexed Fe(III) or Mn(II) ions. At low pH values (usually below 5.5), the heme cofactor can be involved in the electron transfer to one-electron acceptors. Even though CDH has been studied for a considerable time, the exact role and function of the two prosthetic groups are not fully understood. The pH optima with most electron acceptors are rather acidic, but oxygen, although a poor electron acceptor, is also reduced to H2O2 under neutral and alkaline conditions (30).In recent years CDH was shown to participate in the ligninolytic or cellulolytic metabolism of white rot fungi (3, 10, 24, 26, 50). The currently favored mechanism is the production of hydroxyl radicals through Fenton reaction chemistry by the ability of CDH to reduce Fe3+ to Fe2+ and to produce H2O2 (28, 31, 36, 37). CDH is believed to be involved in early stages of cellulose breakdown: knocking out the cdh gene in T. versicolor did not considerably affect its ability to grow on amorphous cellulosic substrates, while it could not grow on crystalline cellulose or recalcitrant substrates such as birch wood (13).Interestingly, no CDH activity has been reported so far from cultures of C. subvermispora, even though it is closely related to other white rotters producing this enzyme, e.g., Trametes spp. (35, 41) or Pycnoporus cinnabarinus (45). It has been speculated that the lack of CDH might contribute to the selectivity of C. subvermispora in degrading lignin while growing on wood. It was therefore the aim of our study to show unequivocally whether C. subvermispora carries a cdh gene and can produce the enzyme under certain growth conditions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号