首页 | 本学科首页   官方微博 | 高级检索  
     


Hepatitis B Virus Replication and Release Are Independent of Core Lysine Ubiquitination
Authors:Mayra L. Garcia  Rushelle Byfield  Michael D. Robek
Affiliation:Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510
Abstract:Ubiquitin conjugation to lysine residues regulates a variety of protein functions, including endosomal trafficking and degradation. While ubiquitin plays an important role in the release of many viruses, the requirement for direct ubiquitin conjugation to viral structural proteins is less well understood. Some viral structural proteins require ubiquitin ligase activity, but not ubiquitin conjugation, for efficient release. Recent evidence has shown that, like other viruses, hepatitis B virus (HBV) requires a ubiquitin ligase for release from the infected cell. The HBV core protein contains two lysine residues (K7 and K96), and K96 has been suggested to function as a potential ubiquitin acceptor site based on the fact that previous studies have shown that mutation of this amino acid to alanine blocks HBV release. We therefore reexamined the potential connection between core lysine ubiquitination and HBV replication, protein trafficking, and virion release. In contrast to alanine substitution, we found that mutation of K96 to arginine, which compared to alanine is more conserved but also cannot mediate ubiquitin conjugation, does not affect either virus replication or virion release. We also found that the core lysine mutants display wild-type sensitivity to the antiviral activity of interferon, which demonstrates that ubiquitination of core lysines does not mediate the interferon-induced disruption of HBV capsids. However, mutation of K96 to arginine alters the nuclear-cytoplasmic distribution of core, leading to an accumulation in the nucleolus. In summary, these studies demonstrate that although ubiquitin may regulate the HBV replication cycle, these mechanisms function independently of direct lysine ubiquitination of core protein.The hepatitis B virus (HBV) particle consists of an enveloped nucleocapsid that contains the viral polymerase (Pol) and an incomplete 3.2-kb double-stranded DNA genome (9). In the cytoplasm, the viral core structural proteins interact to form homodimers, which further self-assemble into capsid particles that package Pol and the viral pregenomic RNA. Encapsidated Pol subsequently reverse transcribes pregenomic RNA to give rise to mature double-stranded relaxed circular DNA-containing capsids. HBV DNA-containing capsids are released from the cell as mature virions after acquiring an envelope consisting of cellular membrane lipids and the viral small, middle, and large envelope proteins (4, 9, 41). Due to the directed insertion of the envelope proteins in the endoplasmic reticulum and Golgi membrane, and the requirement of the large envelope protein for virion release, nucleocapsids are hypothesized to bud at intracellular membranes for release through the constitutive secretory pathway (5). Although the mechanism and site of HBV nucleocapsid envelopment and release remain poorly understood, emerging evidence indicates that the cellular ubiquitin pathway may play a role in this process.Structural proteins of some enveloped RNA viruses contain highly conserved sequences [PPXY, P(T/S)AP, and YPXL] termed late (L) domains that mediate interactions with proteins of the endocytic pathway to facilitate virus budding and release (1). The P(T/S)AP motif binds Tsg101 (8, 10, 19, 27, 47), a key ESCRT (for endosomal sorting complex required for transport) component for the recognition and sorting of ubiquitinated proteins to internal vesicles of the multivesicular body (MVB), while the YPXL motif binds Alix, an ESCRT-associated protein (26, 44, 48). The PPXY motif binds proteins of the Nedd4 family ubiquitin ligases, which are responsible for ubiquitination of proteins targeted for endocytosis and sorting to the MVB (20), suggesting a link between ubiquitin and viral budding (3, 16, 17, 22, 43, 55). The observation that proteasome inhibition, which depletes free cellular ubiquitin by interfering with ubiquitin recycling, results in a viral budding defect similar to that seen in virus L domain mutants further supports the implication that ubiquitin plays a role in mediating virion release (15, 31, 40, 43). Furthermore, fusion of ubiquitin to the Rous sarcoma virus (RSV) PPPY-containing Gag protein and the equine infectious anemia virus (EIAV) Gag protein containing a heterologous PTAP or PPPY motif rescues the virus-like particle release defect induced by proteasome inhibition (18, 31). While the role of L domains in mediating virion release is relatively well established, it remains unclear whether direct ubiquitination of viral structural proteins is generally required for virion release. Mutation of ubiquitin acceptor lysine residues in the RSV Gag protein inhibits virus budding, but such mutations in human immunodeficiency virus type 1 (HIV-1) or murine leukemia virus Gag protein exert no effect on virus release (29, 42). Recently, a retroviral (i.e., prototypic foamy virus) Gag protein engineered to lack ubiquitin acceptor lysines and encoding either the PSAP or PPXY motif of the L domain displayed no defect in viruslike particle release (58). Altogether, these results suggest that recruitment of host proteins to the L domain and ubiquitination of interacting proteins, but not the viral structural proteins, is required for ubiquitin-dependent virion release, at least for some viruses.The HBV core structural protein contains two potential ubiquitin acceptor lysine residues (K7 and K96) and an L-domain-like PPAY motif (Fig. (Fig.1A).1A). Structural studies indicate that residue K96 and the PPAY motif may be exposed on the surface of HBV capsid particles, at least transiently (4, 32, 37). Studies aimed at identifying interaction factors important for HBV particle release demonstrated a number of interesting findings. First, γ2-adaptin, a cellular trafficking adaptor that contains a ubiquitin-interacting motif (UIM), interacts with both the viral large envelope protein and HBV core, and disruption of the HBV/γ2-adaptin interaction inhibits virus secretion (14, 39). Second, core protein interacts with the Nedd4 ubiquitin ligase through the PPAY motif in core (39). Mutation of the tyrosine in the PPAY motif results in disrupted binding of Nedd4, and overexpression of a catalytically inactive Nedd4 mutant inhibits HBV particle secretion (39). Third, mutation of core K96, but not K7, to alanine results in a defective release phenotype, suggesting that K96 may serve as a ubiquitin conjugation site that aids virion release (32, 39). Recently, overexpression of dominant-negative proteins of the MVB machinery, such as the Vps4 ATPases and the ESCRT-III complex-forming CHMP proteins, were also shown to disrupt HBV budding and virion release, while subviral particles comprised only of envelope proteins were released efficiently (21, 24, 49). This suggests that nucleocapsids may release from the cell by a mechanism distinct from constitutive secretion. These studies show that similar to RNA viruses, HBV utilizes components of the cellular protein trafficking machinery to mediate virion release.Open in a separate windowFIG. 1.Generation of core lysine mutants. (A) The 21-kDa HBV core structural protein contains two lysine residues at positions 7 and 96 that serve as potential ubiquitin conjugation sites. These residues are highly conserved among the four major HBV genotypes (6). Core contains a late-domain-like PPXY motif that serves as a binding site for the Nedd4 E3 ubiquitin ligase. Core additionally contains a potential noncanonical SUMOylation motif at position 96. (B) Lysine mutations were generated by site-directed mutagenesis in the core gene contained within the HBV genome under the control of a CMV promoter. K7R contains a lysine-to-arginine mutation at position 7, K96R contains a lysine-to-arginine mutation at position 96, K96A contains a lysine-to-alanine mutation at position 96, and K7R/K96R contains arginine substituted at position 7 and position 96.Although these findings imply that core ubiquitination may be necessary for HBV particle release, direct evidence of core ubiquitination has been elusive (33, 39; unpublished results). As suggested by previous Gag lysine mutagenesis studies, however, ubiquitin may instead indirectly be required through conjugation to an interacting protein that is essential for mediating HBV release (29, 58). Although core K7 and K96 have been previously assayed in the context of virion release by mutation of the lysine residues to alanine (32, 39), we expanded these studies by assaying core mutants with an arginine substitution at position K7 (K7R) and K96 (K96R), as well as a double lysine-to-arginine mutation (K7R/K96R). Compared to alanine, arginine serves as a more conserved mutation for lysine while still abolishing the potential ubiquitin conjugation site. In the present study, we utilized these mutants to comprehensively examine the role of the core lysines in HBV virus release, the formation of replication intermediates, intracellular localization of core, and the interferon (IFN)-mediated antiviral response.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号