首页 | 本学科首页   官方微博 | 高级检索  
     


C-terminal truncation and histidine-tagging of cytochrome c oxidase subunit II reveals the native processing site, shows involvement of the C-terminus in cytochrome c binding, and improves the assay for proton pumping
Authors:Hiser C  Mills D A  Schall M  Ferguson-Miller S
Affiliation:Department of Biochemistry and MSU-NIH Mass Spectrometry Facility, Michigan State University, East Lansing, MI 48824-1319, USA.
Abstract:To enable metal affinity purification of cytochrome c oxidase reconstituted into phospholipid vesicles, a histidine-tag was engineered onto the C-terminal end of the Rhodobacter sphaeroides cytochrome c oxidase subunit II. Characterization of the natively processed wildtype oxidase and artificially processed forms (truncated with and without a his-tag) reveals Km values for cytochrome c that are 6-14-fold higher for the truncated and his-tagged forms than for the wildtype. This lowered ability to bind cytochrome c indicates a previously undetected role for the C-terminus in cytochrome c binding and is mimicked by reduced affinity for an FPLC anion exchange column. The elution profiles and kinetics indicate that the removal of 16 amino acids from the C-terminus, predicted from the known processing site of the Paracoccus denitrificans oxidase, does not produce the same enzyme as the native processing reaction. MALDI-TOF MS data show the true C-terminus of subunit II is at serine 290, three amino acids longer than expected. When the his-tagged form is reconstituted into lipid vesicles and further purified by metal affinity chromatography, significant improvement is observed in proton pumping analysis by the stopped-flow method. The improved kinetic results are attributed to a homogeneous, correctly oriented vesicle population with higher activity and less buffering from extraneous lipids.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号